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ABSTRACT

When an asperity traverses at a relatively high speed over the surface

_,of a medium, the resulting friction force in the contact zone may cause a

"hot spot" that would lead eventually to "heat-checking" or thermomechanical

cracking in the medium. The asperity traversing speed, the load distri-

bution of the asperity over the contact area and the relative dimensions of

the contact area all affect the stress state in the medium, thus the initi-

.. ation of fracture therein. Moreover, the mechanical and the thermal pro-

perties of the medium also play significant roles in the susceptibility of

themomechanical cracking,bf-he-medum,)thus wear of the friction surface.

In the present paper, it is shown that)by assuming a uniform distribution of

the load over the contact zone, the predicted stress level could be 40% less

than that of a non-uniform distribution of an equal total load. While the

shape of the contact area does not affect the stress level, its size does.

For the same average pressure, increasing the size in the direction of

asperity travel raises the stress level; while increasing the aspect ratio

(relatively increasing the length normal to the traversing direction) lowers

the stress level. In the limit of an infinite aspect ratio (a plane strain

model) less than 2,> of the stress level at the aspect ratio of one

results. The multifacet influence of asperity speed manifests in rate of

thermal energy input and in the thermal layer thickness, which determines

the magnitude of thermal stress and the location of fracture initiation. In

the mechanical and the thermal properties of the medium material, higher

coefficient of Coulomb friction and higher Young's modulus, as expected,

lead to higher stress. But higher Poisson's ratio does not significantly

increase the stress. High thermal expansion coefficient and low thermal

capacity are well known to be the source of high thermal stress. The result

.2.- , ".. / -" - -"- - -" - - - - - -. ". ."- --. , "- - "- - .. - . . -. --- '. .- - - -. -- -- '4



bears out their effect in thermomechanical cracking. However, thermal

capacity and thermal conductivity jointly influence the thermal field

through the thermal diffusivity, which occurs in the governing differential

equation. The report demonstrates that the thermal diffusivity is indeed a

derived thermal parameter. It is the values of thermal capacity and the

thermal conductivity individually that determines the thermal field, thus

the stress field that leads to thermomechanical cracking of the wear medium.
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NOMENCLATURE

a Asperity characteristic dimension, the half width of the rec-
tangular contact area in the direction of traverse or radius of
the circular contact area.

b Half length of the rectangular contact area perpendicular to the

direction of traverse.

c Specific heat

E Young's Modulus

k Thermal conductivity

p(x.,x 2) Load distribution

Po Average pressure over the contact area

Pe Peclet Number (= Va/k)

.qo Heat flux through the contact area

R Traction over the contact area in the xi direction

- t Aspect ratio (b/a) or time coordinate

T Temperature field

{u I Displacement field

V Traverse speed of asperity (-x, direction)

{xi Coordinates fixed to the moving asperity

Partial derivative with respect to xi coordinate

Coefficient of thermal expansion

0 Dimensionless temperature field (= Tk/qoa)

rThermal diffusivity

Lame coefficient

9 Lame coefficient, modulus of rigidity

11f Coulomb coefficient of friction

vPoisson's ratio

Mass density



vi

C Ij Stress field

M Mechanical Stress field
ij

ai TThermal stress field
ii

I Maximum combined thermomechanical principal stress

{E,n,41 Dimensionless coordinates (= xl/a)

Cm Dimensionless depth of maximum thermal gradient

(-) Fourier transform of
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1.0 INTRODUCTION

In some mechanical systems, mating surfaces are pressed against each

other and undergo relative sliding motion, which may occur with dry friction

either by design or inadvertently through normal operation. Had the pres-

sure been evenly distributed according to design, the service life of the

device would not be a serious problem even at a high rubbing speed. How-

ever, it is well known that the actual contact area may only be a small

fraction of the nominal area at the design interface [1]. Burton [2] con-

sidered 10-4 as a possible areal ratio (the ratio between the actual contact

area and the nominal area at the design interface). In other words, a low

nominal design pressure may result in a very high interfacial pressure, thus

a very high dry frictional force In the actual contact area. Experiments

have demonstrated such high friction, and the resulting extremely high local

temperature, called a "hot spot" [3,4]. The hot spot is considered one of

the causes of frictional cracking, or "heat checking" [5]. It suffices to

assume that the localization of contact area is due to some form of asperi-

ties, from thermoelastic instability or impurities, which may be fixed to

any of the mating surfaces or may precess with respect to both. Based on a

model of asperities fixed to one mating surface and tneir excitation,

the rmo-mechanical actions, on the other hard mating surface, Ju and Huang

[6,7] developed a three dimensional theory of thermo-mechanical cracking.

In the general theory, the complicated solutions were left in the expres-

sions of Fourier transform. Numerical solutions were obtained for material

properties similar to those of Stellite Ill. It was shown that, for a con-

servative areal ratio of 10-3, a 246 kPa (35 psi) design pressure could

result in a 240 MPa (35000 psi) asperity pressure. At this pressure, a

moderate Coulomb coefficient of 0.5 and an asperity traversing speed of 10
N__A
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mps (400 ips) would lead to thermo-mechanical cracking, initiating at a

depth of one-tenth asperity size, approximately 100 pm deep. A general

review of related works is referred to (7]. The present report shall study

the asperity and the material parameters which influence the thermo-

mechanical stress state in the medium which lead to heat checking.

1.1 Mathematical Model and Parameters

The phenomenon of thermomechanical cracking, as observed from experi-

ments' and operational damages, is seen to associate with relatively hard

materials; such as cast iron, Stellite III and the likes. The plastic wear

and surface shear are restricted in a very thin surface layer, Blau [9] and

Ruff and Blau [10]. Thermo-mechanical cracking could very well initiate at

sub-surface region, where the material behavior is essentially thermo-

elastic. The governing differential equation are the thermoelastic Navier's

equation and the uncoupled Fourier equation, respectively

(X4 )aijuj + PD1 ui  Pui+ (3X+2p)ai T, (1)

and

k a11 T =T, (2)

where a1 = a/axi, (X,p) are the Lame's coefficients, p is the mass density,

is the coefficient of thermal expansion and r the thermal diffusivity. The

indices in the subscript i,j,k, 1,2,3 and the summation convention are

used for all repeated indices of roman minuscules. The stress field {a iji

can be expressed in terms of the thermoelastic Hooklan Law:

%lj : xakuk&iJ + 1(ajui + a uj.) - (3X + 2p)cTsij, (3)

where Sij is the Kronecker delta. The coordinates, {xi}, in Equations

(1-3), are material coordinates; that is, they are fixed to the wear

- _ • . , . . .. . . . . .. -. . , o . .. . . . .
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material over which the asperity traverses. The field variables, {uil and

T, as evidenced in Equations (1,2), are defined in (xit). In other words,

time is an explicity variable. The moving boundary conditions are also time

dependent. We can now restate our mathematical model as follows. The size

of the asperities under consideration are of the order of I mm; the thick-

ness of the hard material that was acted on is at least an order of magni-

tude larger. Hence, the material is adequately represented by a half space

with the asperity traversing over the surface boundary at a uniform speed

(V) as shown in Figure 1. At high speed traversing, the high temperature

and surface yield due to the excitation are subgranular. If the region of

consideration is away from such subgranular layer, the half space region Is

basically elastic and subjected to brittle fracture. For the present pur-

pose, the material can be considered as homogeneous and Isotropic without

local flaws. In the analytical formulation, with respect to the material

reference frame (fixed to the half space material), the field variables

{uI,TI will have local time variation. Hence, the problem is transient.

However, by taking into consideration the uniform properties of the

materials, asperity motions and loadings, we can justify the invariant

states of the field variables. In other words, with respect to a convective

reference frame (fixed to the asperity thus moving relative to the

material), the analytical formulation becomes "steady state"; that is, there

is no explicit time variable. The coordinates shown in Figure I are con-

vec~ive such that x I is oriented along and opposite to the asperity-

traversing direction; x3 is perpendicular to the boundary surface into the

material; and x2 is parallel to the surface but perpendicular to the tra-

versing direction. The governing differential equations for the displace-

ment feld {uil and the temperature field (T) in the material referring to

the convective coordinates, the dynamic thermoelastic Navier's equation (I)

and the uncoupled Fourier law (2), become:

%e .7 g **.* * * r *-- - * .- * V** . * - *.. . . . . .
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Figure 1. Asperity excitation over the wear medium.
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(X + ju< + fjju:f OV allUi + (3X +

k =iiT = V0.IT. (5)

The Equations (4,5) are only implicitly time dependent. The boundary con-

ditions in terms of the convective coordinates are also time-independent. On

the surface

3 - Ri' (6)

and

ka3T : - VRI, (7)

where the tractions are: R2 = 0, R3 = P(xl,x 2) and R1 = IfP(x1,x2) in the

contact region and zero everywhere, P(xl,x 2) is the asperity pressure,

Pf is the coefficient of Coulomb friction and k is the thermal conductivity.

Without loss of generality, the mating surface and the non-contact wear

surface are assumed to be adiabatic. The regularity conditions for the

stress and temperature fields hold at infinity; that is, at xix i  9i

aiJ 0, (8)

and

T = 0. (9)

From the governing differential equations (4,5) and the boundary conditions,

Equations (6,7), we can thus delineate the parameters as those character-

izing the asperity and those the material. The groups of parameters are

listed as follows

• The thermal energy loss across the free surface by convection is small

generally. Since the maximum temperature gradient occurs at the immediate
vicinity of the moving asperity, the heat loss by convection will not
alter significantly on the criterion for thermo-mechanical cracking.

.1 1
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Table I

Asperity parameters

V Asperity traversing speed

P(xIx 2) Asperity pressure

a Asperity contact area width (in the traversing

direction)

b Contact area length

Contact area shape

Table II

Material parameters

, or E,v Mechanical constitutive coefficients

p Mass density

Pf Coefficient of Coulomb friction

cCoefficient of thermal expansion

Thermal diffusivity

k Thermal conductivity

The present report will study the effect of these parameters.

1.2 Analytical Solutions

For general solutions of Equations (4,5), Fourier transforms of co-

ordinates (xlx 2) are used, resulting in ordinary differential equations in

X3; that is

f(i,x x I[f(xi)] L f(x1 )exp[i(-x1 X+ X2 )]ddx2, (8)

2.. . . . . ..... .... -.... ...... ........... ..... .............. .. ..... ... ..,.
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where, and in the sequel, (-)denotes the Fourier transform [( )]. The

temperature fields are obtained in the transformed space and are employed

directly as input to the transformed differential equation of Equation (4).

The inverse transform of special cases are carried out by numerical methods.

The numerical method itself is checked with the solutions of temperature

field, which can be alternatively obtained by the Green's function solution

[8].

The non-homogeneous differential equation (4), subjected to nonhomo-

geneous boundary condition (6), is solved by dividing the stress and the

displacement fields {aiJ, ui into two portions

M ,uM and faT T
i u a , u } such that

u= uiM + ui T (9)

= GM Tai ij ai J + - (10)

The individual displacement and stress components are related following the

thermoelastic Hookian Law, Equation (3), as:

M: kaukMS + (auiM + uM) (11)
ij k k ij u i

ij au ij + I ajuiT + ai T- (3 + 2p))Taij. (12)

The set {aijM, uiMY is required to satisfy the homogeneous differential

equation but nonhomgeneous boundary condition; that is, in the region,

(X M M PV2 uM (13)

+ i)juj * :aju an 3 i

and on the boundary,

M = -R, on the surface;3i

(14)
M

Iij 0 at xkxk
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The set t{iijT, uiTI is to satisfy the non-homogeneous differential equatfon

but homogeneous boundary condition; that is, in the region

(X + iA)a.ijujT + JLju1T = PV2 11u1 T + (3k + ZI)a 1iT, (15)

and on the boundary,

31 T 2 0, on the surface;

0 T... atxkk=0.(16)fij T = 0, at =x

The mathematical delineation, for convenience of solution, essentially in

the physical sense separates the stress and the displacement fields into two

parts. One M uiMI results from the mechanical excitation of the

asperity; those are the traversing normal pressure and frictional traction.
;. T T}

Another jT u T is solely the consequence of temperature field or rather

its gradient {aiT,. resulted from the heat input due to frictional energy

loss rate. They are respectively called the mechanical portion and the

thermal portion of the solutions. It is noticed from the Fourier equation

(5,7), that the temperature field Is itself the result of the friction force

1'fP. Friction, therefore, directly affects the mechanical portion as well

as the thermal portion of the solutions. The relative dominance of each

portion, as evidence from the thermal boundary condition Equation (7),

depends on the traversing speed V of the asperity.

The general solutions of the mechanical portion in the Fourier trans-

formed expressions as given in [6] are:

."

'4
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-nx

2)F M (171n3 73 - - 71 2n272) e -{i~inln 2 73 -

-223n2 [ ( 3  nl2) + n 2n3 J1 +n 2  (3 - 2nln2 ) 7T2  e n x3

21F uM (I2n373 - 717 2n271 - x2n272) efllX3 - +

m (n - 2nln 2) - n2 3 - 2nln 2 ) + n3 ] 
((

2T e n
2 X3

S-nx

21F = (nln 3 +3 + in n + i-2nln 2 2) eX -

(n 7 2+ -2-n2x 3

1[n(x1  + 72 ) 3 + i71n3 + i72n3 2] e , (17)

"*8 °-""*% ""%o .. v"-°-"- .. . -"-"% " "% "-" "-"•"-.- . . . %".',"• . "- - "-. . . 4.,- . ' % ."•"
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F -M = + 2 - n12 ) + 712 ] e-n x3 - { n12nn2 3 +

i1 [72 N2 + n2n3] 1 - i1x x2N2R21 e ,

F 22 : [(712 + 722 - n12) K + 7221 e-nlx3  {22nn 2 3 -
2 2 -n2x 3

- i,122N271 + 172 1  2  n32 3 21 e 3,

F - M [(712 + i22 - n12) K - n12] e llx3 +

+~~~~ ~ ~ ~ n_ (12+72 )n7+i -n2x 3

+n2 [(712 4 x22) nl1 3 + in3 (71RI + x2R2)] e ,

F M -nl3 - _ +

12 = 1x2B e - {xix 2n n2R3 + x2 [n2 n3r, ~-nx3 ,

-(712 722) N + 7 23 + (7272) N2] 2  X
F-m -nBe-nlx 3-+fxn -2

123M : -172 n 1ge + {7 2n1 (72 + x2 + n22) 3

27172nln 27I - [712N 1  + n3 (n 2+ 722) e-n2x 3/2,

-nix 3  2 2 2

F n U e + {ixlnl (1 + x ) 3
2 2 -x 2-n2x 3

S[72 2NI + n3 (n2 + 71% 1 - 27172nln 2721 e /2, (18)

where nr = (Xsx s- Mr2 1 2

n3 = xss- 1 M2-2
f3  sXsX 2 7 2 x 1 ,

Mr = V/cr, Cl2  (X + 2p)/P, c22 :1/0,

F n32 - nIn 27sxs,

N, = n3 - 2nin 2 , N2 =N/n21

-'. 9 *b- 9 S* .* . .. . - -|* S
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K = X/2p = v/(1 - 2v)

9 = n3R3 + in27sR s, r,s : 1,2,

7i = g[R i].

The expressions of the mechanical portion are quite general, applicable for

any traction {Ri}. Specifically for the problem of asperity excitation, R3

is the asperity pressure P(x1,x2), R1 is the asperity friction j±fP and

R2 = 0 in the contact area of the surface and zero everywhere else on the

surface. By taking R, and R3 serparately, the computation can be much

* simplified and also can afford a comparison of stress fields as effected by

normal pressure and frictional force.

The temperature field in the Fourier transformed expression is:

-wx3
T = e {[C I cos(ex 3) + C2 sin(ex 3)] 7I +

+ [C3 cos(ex 3) + C4 sin(ex 3)] 721, (19)

w" = ,-2w2 + inwhere C2 2
2w(w 4

2 2 + in
2e( 2 + 82)

c = -n - 12w2C3 : 2 2
w+ 8

C -n + i2e2

4 29(w2+ e )

e : [ (s 4 + n2 ) 1 2 _ s2 ]1/2

(s 4 + n2 1
/2 - s2 ]1/2

2 -

., .. . -. ... .. .-.. .. . .. .- .. -. . .- = , .. ,. .. - . .- - -*- ,. . . , - . . - :. _' " '',iC"
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s2 : 2 + 2 V r

and 7 + i 2 
= V7 /k.

The temperature fields for individual cases are left in the Fourier trans-

formed expression as the excitation to the transformed differential equation

of the thermal portion {aij T, uT of the thermoelastic Navier's equation

(15,16). The temperature fields, in inverse transformed expressijns, are

used as a double check of the numerical procedure against the Green's func-

tion solutions and also serve to correlate the temperature gradient with the

maximum tensile stress.
T T}

The expressions of the thermal component {ij, ui are very complex,

that it is rendered necessary to resort to numerical methods in inverse

Fourier transforms for individual values of parameters. The Fourier trans-

formed expressions of thermal components are given as

-T xr e-sx3
ur - (h. + h2x3) +

x2

axW
+ [G cos(x 3) + H sin(ex3)] e , r = 1,2,

- T _ i sx3
u3  [as(h + h2x3) + + 2)h ea 22 [3 e a2

a~x
3 -(x3[G3 cos(x3) + 3 sin(ex3 )] e , (20)

here -(n + 12w 2) 1 + (2w2 -in) 2*. where H 2: I(CIF 32
2(121++ C2) '

G (n - 12e 2) 71 + (202 + in) F2 i(C 7 +
2 221 42)

20(w + 0

'.
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G3 = - eH), H3  -i(wH - eG),

a1 = a4 + 2 2(1 - v)/(1 -2),

a2 = a4 + 11(1 - 2v),

a3 = (3a4 + 2)a = 2*(1 + v)/(l - 2v),

a4 = x/ 2v/(1 - 2v).

a 3x 2 2h I : - x [also H + (s -a lsw + a 1 ]
2ala 2s we

and h2  32 [-so H - (s12  - + a1 2) G].

h2 2a~swe -eH- s-s

The Fourier transformed expressions of the thermal stress field are:

T11 - x 3 H-sx 3

22T --bH xGe 3+(bH-S~ sx3]

r33 -wx 3  -sG'ex3-- i [ (-b H + b10 G) e (-bH + b G

2T -wx 3  SX3 1-= [ (-b13H + b14G) e + (-b15H + b16G) e ,

- T -wx 3  sx33 x2 [ (b17H- b18G) e -(b19H- b 20G)e ]

T7 'O3 + (-s

"23T - -Xl (b17H b b1G) e -(b9 H b20G ) e ],(1

-x -sx

"3 bHbG -x3(b Hb G) e3],(1

,j

lt- ..
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where

-a3= a3 [2we cos( ex) sin 2x)

b2  :al3 2 cos(x 3) + 2we sin(0x3)],

2 -2a 3 a4s x1 x3
awb + ( sb3 G2 -- as ala 2 a-

a 3  a w - s 2 a 4(s - s2)b 4 la a-+ -2 1 a2 (s- ) Ix 3 ]
1we[ 2s x2l -2

-a3 [ -2b 5  8 [28 o cos(ex 3) x2  sin(ex 3)],

|-a
3  [2

b6 : a 2 cos(ex 3) + 2we sin( x3)],

6 aw -2

a3 (2 + a-s 
22 x3)

b a3  aw - s a4(s s 2 sw)

-a3s2 .
b = a 1 24lx3 2

a3s2

b9: al- cs(ox3),

a3s2

- 11= 17 ' 3,

a~2

12 - [1 + (s - w) x3 ],

I

.................................................
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a3b13 : alm sin( Ox3),

a3
14- - cos(ex 3),

a 1 x

15 : i -s '

b a3  [ lt- s x

16 a w a2s +(s- )

a3

b 17 [-e cos(ex 3) + w sin(ex 3)],

b18 :!- [w cos(ex3) + e sin(ex 3)],

a 3
b _ 1 + sx3),

20 alw e [-w + s(w - s) x3],

Equations (17,18,20,21) are the general solutions of 1a1jM M and

fa. T I in their Fourier tranformed expressions. With given excitation

* conditions: {Ri,VI. The inverse transform can be carried out numerically.

The numerical technique was reported by Ju and Huang in [6]. The effects of

individual parameters are therefore analyzed through specific numerical

variations of their values.

.- :
. .. . . . . . . . . . ..". . . . .."-..." " .'•- -, -"- ," .-.. '-.-"v -"."."S *"."-.-,.-.. . . ." i - -' "> , >: -"'
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2.0 ASPERITY PARAMETERS

The asperity parameters involve those excitation-related, the actual

pressure and its traversing speed (P,V), and those related to the geometry

of the contact area, its width in the direction of traverse, it length and

its shape (a, b, contact are shape). The excitation-related parameters are

principally design oriented. Yet the actual pressure and its distribution

in the contact area have to be determined empirically. The contact area

configuration is not readily known to be controllable by design. However,

studies of these parameters are important in analysis of wear resistance, to

promote reliabililty in design. The studies will provide the unstanding in

adequacy of analysis by using a two-dimensional model or by assuming an

uniform distribution of pressure (thus friction) in the contact region.

2.1 Excitation Parameters

The traversing speed of the asperity (V) influences both the convective

acceleration term, Equations (13,15), and the thermal input, Equation (7).

It is readily conceivable that at low rubbing speed the mechanical portion

of the stress dominates. In the limit at zero traversing speed, there may

still be mechanical field; but the thermal field becomes trivial. At high

speed asperity excitation the thermal field prevails. The present report

addresses specifically the latter case.

At high speed ex ,tation, the temperature is high near the surface, and

the thermal stress is compressive as a result of constraint against thermal

expansion. At below surface layer, where the temperature field has high

gradient, the interparticle constraint thus creates high tensile stresses,

which at unfavorable loading could lead to crack initiation through cohesive

failure. The phenomenon is illustrated in Figure 2, showing the stress

..........
'a-.
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field near the surface layer as a result of high speed asperity traversing

at 15 m/s (600 ips). The excessively high compressive stress at the surface

layer indicates a plastic zone up to a depth of the order of 10 pm. The

depth of plastic deformation is well of the same order for hard wear

materials (9]. However, if the crack initiation due to cohesive failure

occurs at a depth of an order of magnitude larger, the thermoelastic formu-

lation of the thermomechanical cracking model In Art. 1.1 will hold. The

maximum tensile stress due to thermal field will occur in the neighborhood

of the depth of maximum temperature gradient. The temperature field and its

gradient are respectively:

d6 2= f(C,n,8) exp(-c /2e)de, (22)

d -/0 -'I f(, e) exp(- 2/2o)de, (23)

where (E,ng) = (xi/a) is the dimensionless coordinate, o = Tk/q 0a is the

dimensionless temperature field In the medium, qo is the heat flux due to

the average frictional load, and

N +

erf( + t) erf( - t) erfl(j _ )
4v'27 '-2e 2e r =1

- erf( ) ]
In the expression of f(Cn,6), N is the number of repeated asperity exci-

tations, t is the aspect ratio, Cr - (r - 1)X' - 1/2 Pe e, ' is the

periodic length Vt/a, T is the period of excitation, Pe Va/r is the Peclet

number. The expression is, without loss of generality, using a uniform load

k . -- '- . . . - . . . .. -. . .. - - . - i . - . i . -' -.. - . -. - .- - > . . . i- .2. - . . .. - ,1 . -- >
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distribution over a rectangular contact area. The depth (Cm), at which the

maximum temperature gradient occurs, can be obtained by extremizing the

temperature gradient, Equation (23), with respect to the depth C, such that

d 2 e- 2 (C2 -e) f(e,n,o) exp(-c 2/2e)do 0, (24)
:11 {: * =m

The maximum temperature-gradient occurs at a depth depending on the Peclet

number, Pe, which is controlled by the asperity traversing speed (V) and the

thermal diffusivity (r). The solution to Equation (24) are obtained numer-

ically for different values of number of asperity repetition (N), lateral

position (n), contact area aspect ratio (t), and Peclet number (Pe).

Figure 3 illustrates the depth of maximum temperature gradient in a hard

wear material such as Stellite I as a function of the Peclet number for a

single asperity, n = 0 and an aspect ratio of 10. The plot is up to some

Peclet number corresponding to the magnitude of the traversing speed (V) in

the neighborhood of the Rayleigh wave speed (cR), beyond which the mathe-

matical model no longer holds. It is noticed that up to Pe = 1.4 x 103 the

depth Cm is fairly constant around 0.1. Based on the Stellite III as the

medium, an asperity width of 0.5 mm (-0.02 in.) and a traversing speed of

15 m/s (-600 ips), result in Pe = 1200. The depth Cm thus defines the

thermal layer near the wear surface. Since the layer is indeed by order of

magnitude larger than the plastic layer, the mathematical model is justi-

fied.

The effect of the asperity traversing speed may thus be summarized as

follows:

1. higher rate of frictional energy input, resulting in higher temper-

ature, thus higher thermal stress,

...........................
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2. reduced thickness in thermal layer at higher speed, leading toward

higher gradient thus higher thermal stress.

The dominance of thermal stress over the mechanical stress at high-

speed asperity excitation (15 m/s) is shown in Figure 4. For a circular

contact area with paraboloidal distribution of pressure and friction,

P(xlx 2 ) = P(r) = 2Po(I - r (22)

the thermal principal stress is six times higher than the mechanical

principal stress. With uniform distribution of pressure the ratio is almost

five times. The significance of the thermal components of the stress field

cannot be overemphasized.

The load distribution in the contact area, taking into consideration of

the thermo-mechanical behavior of the wear material, has not been determined

either analytically or experimentally. With the result of Hertzian contact

problem, the assumption of uniform distribution of loading is indeed an

oversimplification. The analysis assumed a paraboloidal distribution with

the same total load as the uniformly distributed load, Equation (22). The

difference in the thermal principal stresses of the two is already evident

in Figure 4. Figure 5 further compares the total thermomechanical principal

stress of a paraboloidal distribution and a uniform distribution of loading

in a circular contact area. For the same total asperity loading, the

assumption of a paraboloidal distribution would result In a thermo-

mechanical principal stress around 80% higher than that resulted from the

* assumption of uniform distribution. Of course neither may claim to be the

true distribution of load in the asperity contact area. But the one of

paraboloidal distribution does give a conservective estimate of crack

initiation and may very well be closer to the real distribution of load.

• . " 5..' " - . .
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2.2 Contact Area Parameters

The study considers both the shape of the contact area and the aspect

ratio of the contact area. Since the actual integral must be carried out

numerically, it is difficult to generate a theory for all contact area

shapes. For practical purpose and computation feasibility, the thermo-

mechanical principal stresses of a circular and a square contact areas will

be compared. There is very little noticeable difference; that Is, the

differences are less than the permissible numerical errors. It is therefore

postulated that the shape of the contact area is not essential in wear

analysis of asperity excitation.

The effect of the aspect ratio (t) of the contact area covers the study

or a square (or circular, t = 1) area ranging toward a line contact (t =

where the problem would be reduced to two-dimensional. Figure 6 shows the

consistent trend of lower stresses with increase in aspect ratios. To the

limit is the two-dimensionl (t =) solution, of which the value is only

one-sixth of the three-dimensional solution of stresses.

It is to be emphasized that the two-dimensional and the three-

dimensional solutions of stresses from the mechanical loading portion are

essentially the same. Hence, the phenomenon is principally thermal.

Indeed, both the two-dimensional and the three-dimensional theories predict

approximately the same surface temperature. But the three-dimensional model,

because of the lateral (perpendicular to the plane) heat loss, will drop

temperature more rapidly thus higher temperature gradient, leading toward

higher thermal stresses.

The effects from different half-widths are shown in Figure 7. It is

noted that higher solutions result f'om larger asperity size which leads to

more heat input, thus higher temperature gradient. However, larger width

implies larger contact area with correspondingly reduced pressure. The

*... t N=. .
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fncreasing stress with the increase of half-width (a) is less than linear,

which may be observed in Figure 7; while the decrease in pressure is most

likely inversely proportional to the square of the characteristic dimension

(a). The result is definitely beneficial for larger a, if it is design

controllable.
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3.0 MATERIAL PROPERTY PARAMETERS

The material parameters under consideration are the mechanical consti-

tutive coefficients (X,,) or (E,v), respectively the Lame's coefficients and

the pair of Young's Modulus and Poisson's Ratio, and the mass density (p),

the coefficient of Coulomb friction (pf), the coefficient of thermal expan-

sion (a), the thermal diffusivity (r) and the thermal conductivity (k).

Their effects are mostly thermal. The mechanical portion, as a result of

tractions only. is essentially related to the prescribed loads. For the

problem of the current asperity speed, it is the thermal component that

dominates the thermomechanical cracking phenomenon. In order to keep the

mathematics manageable, some simplified postulations are necessary. For

instance, the report adopts the simple Coulomb's law on the friction force,

Ff= fFn The heating effect of the friction force influences in the sur-

face layer a temperature rise, which in turn increases the Coulomb coeffi-

cient lf with resulting further increase in friction force [2]. The

analysis, therefore, avoids the iteration by presuming a relatively high

constant coefficient to anticipate a steady state high temperature field.

The numerical computation of thermal stresses is thus based on a coefficient

of Coulomb friction of 0.5, which is conservative for high coefficient of

friction. The mass density (p) affects the mechanical portion of the stress

field, Equation (18), through the Mach numbers (Mr) and the thermal field

through the thermal diffusivity (r k/pc). Since the Mach number is gene-

rally small in this class of problems and the mechanical portion of the

stress field is less significant, the effect of the mass density is princi-

pally combined with the specific heat (c) to define the thermal capacity

(oc) in affecting the value of the thermal diffusivity (r).

- . . . . . . . . . . . . . . . . .
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3.1 Mechanical Properties

It is noticed in the thermal stress equation (21) and the definitions

of the coefficients {b0 that the thermal stresses are directly proportional

to its stiffness (p or E) -- modulus of rigidity or Young's modulus, and the

coefficient of thermal expansion a (as a factor in the coefficient a3). The

effect of the Poisson's ratio is rather obscure. Figure 8 illustrates the

fact that materials with five times difference in stiffness does indeed show

corresponding difference in the maximum principal stress. The variance of

the Poisson's ratio, which is usually around 0.3, does not indicate to be a

significant factor. Yet, as shown in Figure 8, the principal stress will

increase slightly with increase in the Poisson's ratio. It is also noticed

that, even though the mechanical portion of the stress components are

independent of the material stiffness, Equation (18), the effect of stiff-

ness on the combined thermomechanical principal stress is still significant,

owing to the dominance of the thermal effect in high speed asperity exci-

tation.

3.2 Thermal Properties

Similar to the effect of stiffness of the wear material, the mechanical

portion of stresses is also independent of the coefficient of thermal expan-

sion. But the combined thermomechanical stress is almost directly propor-

tional to the coefficient of thermal expansion as indicated in Figure 9.

Physically it is apparent that higher coefficient of thermal expansion

introduces more mechanical constraint in the material for the same temper-

ature gradient.

The effect of the thermal diffusivity (r) is more complex. Although

the thermal diffusivity occurs as the only thermal property apparent in the

governing differential equation (5), its value is determined by the coeffi-
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cient of thermal conductivity (k) and the thermal capacity (pc) in that

= k/pc. If the thermal conductivity (k) Is kept constant, the lowering of

thermal diffusivity will lower the temperature field because of increase in

the thermal capacity (pc). It lowers the temperature field; and its effect

on the thermal stress, is positive. However, if the reduction in the ther-

mal diffusivity is caused by a reduction in thermal conductivity (k), the

boundary condition (Equation 17) is also affected, resulting in higher

temperature gradient thus higher thermal stress. Figure 10 illustrates the

case for which the thermal capacity (pc) remains constant. The change in the

thermal diffusivity is directly proportional to the change in the thermal

conductivity. The maximum principal stress increases with decrease of the

thermal conductivity, thus thermal diffusivity, even though not exactly in

inverse proportion. However, if the reduction in the thermal diffusivity is

due to the increase in thermal capacity rather than the decrease in thermal

conductivity, lower stress will result. The effects of variation in thermal

properties on the maximum thermal stress at the depth C = 0.1 for a uni-

formly loaded rectangular contact area t = 10 and an asperity speed of

15 m/s, is illustrated in Figure 11. Curves I through 3 maintain a constant

thermal capacity. Curve I uses the thermal properties of Stellite III.

Curves 2 and 3 illustrate the decrease and increase of the principal thermal

stresses corresponding to the doubling or halving the thermal diffusivity.

However, when the halving of the thermal diffusivity is caused by a doubling

in the thermal capacity rather than halving of the thermal conductivity, the

principal thermal stress reduces almost in half as shown by Curve 4.

Finally, as significantly illustrated in Curve 5, the thermal diffusivity is

kept the same as in Curve 1, but both the thermal conductivity and the ther-

mal capacity are halved. The ensuing increase in thermal stress is most

noticeable.
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4.0 CONCLUSION

The parametric study enhances the understanding or thermomechanical

cracking through the mechanism of subsurface cohesive failure, which is

predominantly a thermal stress phenomenon at high speed asperity excitation.

The asperity parameters are, in general, not controllable quantities. The

purpose is therefore to improve analysis for conservative designs. For

instance, a parabolic distribution, resulting in higher themomechanical

stress, is preferred over the assumption of uniform distribution. The

asperity initiated cracking is essentially a three-dimensional phenomenon;

two-dimensional analysis under-estimated stress level by six times. The use

of uniform load distribution and two-dimensional formulation cannot be

justified for actual design computation unless an artificial and high factor

of safety is used. Their use may be used in cases:

1. Two-dimensional theory yields the same mechanical stress field and

the same surface temperature as those from the three-dimensional theory

developed in [6,7]. In such case, two-dimension theory may be preferred for

its much simpler mathematical computation.

2. Uniform distribution of load may be employed for the illustration of

parametric effect in the comparison of stress magnitudes. Since the rela-

tive stress levels rather than the real ones are of interest, the simpli-

fication in mathematical analysis is justified.

The other non-controllable asperity parameter is the asperity shape. It

is gratifying with the demonstration of the comparison of a square and a

circular contact area, both of an aspect ratio of t = 1, that the difference

of their results Is negligibly small. The asperity speed affects the thermo-

mechanical field two-fold. In one, the higher speed results in a higher

heat input, VR, leading toward a higher thermal stress field. -In another,

__S- . . * * - - - a .--. - .
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the higher speed increases the Peclet number, causing a decrease of the

thermal layer, the distance between the wear surface and the depth of maxi-

mum temperature gradient. This decrease in the thermal layer, itself would

cause an increase in the temperature gradient, thus promoting an increase in

the thermal stress.

Among the material properties, the stiffness ( t or E) and the coeffi-

cient of thermal expansion (a) are directly proportional to the principal

thermal stress. They are unrelated to the mechanical portion of the stress

field. In view of the predominance of thermal stress field for high speed

asperity excitation, the choice of stiffer wear material must be compensated

by a sufficient reduction In the coefficient of Coulomb friction.

The thermal properties to be considered in design should be the thermal

conductivity (k) and the thermal capacity (pc). The thermal diffusivity is

a derivative parameter. High thermal conductivity and high thermal capacity

are definitely preferred to reduce the thermal stress. Furthermore, an

increase in thermal conductivity would lead to lower Peclet number

(Pe = VX/k) thus thicker thermal layer. The ensuing reduction in temper-

ature gradient will result in a further decrease in the thermal stress

field.

The present report thus identifies those parameters to be considered in

analysis and in design. The information should assist the analyst to choose

the proper mathematical model and the designer to select wear materials

based on the influential material properties for an optimal design.
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